Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis

Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated trans...

متن کامل

Mitosis can drive cell cannibalism through entosis

Entosis is a form of epithelial cell cannibalism that is prevalent in human cancer, typically triggered by loss of matrix adhesion. Here, we report an alternative mechanism for entosis in human epithelial cells, driven by mitosis. Mitotic entosis is regulated by Cdc42, which controls mitotic morphology. Cdc42 depletion enhances mitotic deadhesion and rounding, and these biophysical changes, whi...

متن کامل

Involvement of DNA-dependent protein kinase in normal cell cycle progression through mitosis.

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) plays an important role in DNA double-strand break (DSB) repair as the underlying mechanism of the non-homologous end joining pathway. When DSBs occur, DNA-PKcs is rapidly phosphorylated at both the Thr-2609 and Ser-2056 residues, and such phosphorylations are critical for DSB repair. In this study we report that, in addition to r...

متن کامل

CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin

CYLD is a tumour-suppressor gene that is mutated in a benign skin tumour syndrome called cylindromatosis. The CYLD gene product is a deubiquitinating enzyme that was shown to regulate cell proliferation, cell survival and inflammatory responses, mainly through inhibiting NF-kappaB signalling. Here we show that CYLD controls cell growth and division at the G(1)/S-phase as well as cytokinesis by ...

متن کامل

Inhibitory effect of LXR activation on cell proliferation and cell cycle progression through lipogenic activity.

Liver X receptor (LXR), a sterol-activated nuclear hormone receptor, has been implicated in cholesterol and fatty acid homeostasis via regulation of reverse cholesterol transport and de novo fatty acid synthesis. LXR is also involved in immune responses, including anti-inflammatory action and T cell proliferation. In this study, we demonstrated that activated LXR suppresses cell cycle progressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: eLife

سال: 2016

ISSN: 2050-084X

DOI: 10.7554/elife.19799